Understanding > Knowing more > Galilean satellites
The Galilean satellites of Jupiter are remarkable bodies in many ways. These are the oldest known bodies not directly visible to the naked eye, they have similar sizes than Mercury and represent, rotating around Jupiter, a miniature solar system where all the problems of celestial mechanics are gathered: perturbation due to the flattening of Jupiter, by the Sun, Saturn and by mutual interactions. Their fast motions are easily observable and generate spectacular phenomena of eclipses. The Galilean satellites are very different from the other satellites of Jupiter which are only some rocky bodies similar to asteroids. Space probes have recently shown a wide geological variety (active volcanoes, ice crust, presence of water, ...). All this makes that these objects were extensively studied by astronomers and one of the main targets of the conquest of space. Let's see how our knowledge of these bodies have evolved, how we observe them and what we know today.
The four Galilean satellites have been named Io (J1), Europa (J2), Ganymede (J3) and Callisto (J4).
The table below summarizes some physical data on the satellites. Their orbits almost belong to the same plane which is the one of Jupiter's equator and are almost circular. In order to calculate their positions with high precision, it is important to determine the deviations of these satellites relative to the plane of Jupiter's equator and compared to perfect circular orbits. These are the multiple gravitational perturbations acting on them that cause these differences.
Io - J1 |
Europa - J2 | Ganymede - J3 | Callisto - J4 | |
---|---|---|---|---|
periode of rotation | 1.8 days | 3.6 days | 7.2 days | 16.7 days |
eccentricity of the orbit | 0.004 | 0.009 | 0.001 to 0.002 | 0.007 |
inclination on the equateur of Jupiter | 0°.04 | 0°.47 | 0°.19 | 0°.25 |
diameter | 3630 km | 3138 km | 5262 km | 4800 km |
magnitude | 5.0 | 5.3 | 4.6 | 5.6 |
geometric albedo (V band) | 0.61 | 0.64 | 0.42 | 0.20 |
elongation maximum | 2' 18" | 3' 40" | 5' 51" | 10' 18" |
See the pages on celestial mechanics for the definition of the parameters of the ellipse. We notice that they are very bright and could in fact be observed with the naked eye if Jupiter had not a powerful light halo. The maximum elongation shows that Callisto does not move more than 10 minutes degree from Jupiter (one third of the diameter of the Moon), which is not sufficient for it to be separarted enough from the planet and to be visible with the naked eye.
The figure at left shows the comparative sizes of the satellites of Jupiter compared with the Moon, Mercury, Mars and Pluto. We see that they are indeed true small planets. The biggest asteroid has a diameter which reaches a quarter of the smallest Galilean satellite.
The telescope was existing for several years
when Galileo had the idea of directing it towards the sky. For
that he had to improve existing models that but this
use opened a new field for the exploration of the sky. It was a
revolution, as today space exploration whenn seing the discoveries which followed.
Listen to Galileo talking about his first observations
" On January 7, 1610, at one in the morning, then I was exploring the sky with my telescope, Jupiter presented itself to me, and because I had built a powerful instrument, I could see three little stars next to him. Although I considered as stars, I was very surprised because they seemed exactly aligned on a line parallel to the ecliptic and because they were much nicer than the other stars of the same magnitude. Their positions were as follows:
that is to say there were two at east and one to the west. The further at east and the one on the west side seemed slightly brighter than the third. I did not pay attention to their distance from Jupiter since as I already said, I thought it was fixed stars. When, on January 8, I do not know why, I did the same observation, I saw a completely different configuration: three stars were now all on the west side of Jupiter, and they were closer to each other than the night before, at equal distances from each other, as in the following figure:
being to such a phenomenon, and unable to conceive that stars can change their relative positions, I wondered how Jupiter could be found east of the stars that day, while it was in the west of two of them the day before. Its motion was direct, in contradiction with astronomical calculations and was it by its own motion he had moved among the stars?
I waited until the next night with impatience, but I was disappointed because the sky was cloudy all sides.
Le 10 janvier cependant, ces étoiles apparurent dans la configuration suivante par rapport à Jupiter :
There were only two stars, and both in east of Jupiter, and the third was, I suppose, hidden by the planet. They were, as before, aligned with the planet, and exactly in the zodiac. Seing that, understanding that these changes of configuration were not due to Jupiter and confident that these stars were the same as the previous days, my doubts were transformed in astonishment. I realized that this change of relative positions were not due to Jupiter but to the stars themselves. For this reason, I decided to continue observations with great care.
On January 11, I saw the following configuration :
Only two stars were to the east of Jupiter, the central one being three times farther from Jupiter than the other star. The one the most easterly was twice brighter than the one at the center while the previous night they appeared to me to have the same magnitude. I admitted that there was in the sky, without a doubt, stars turning around Jupiter in the same way that Mercury and Venus revolve around the Sun ..."
It was only on January 13 that Galileo could observe the four satellites simultaneously. He then made this drawing :
This discovery of Galilee would change our understanding of the solar system: we had an example of motion that was not around the Earth. And the Earth was no longer an exception since Jupiter had moons following it in its motion around the Sun. The Earth could become a planet like the others revolving around the Sun. Note, however, that it was only an observational fact, not a demonstration since the foundations of dynamics and gravitation necessary for that were still unknown.
Galilee named these stars the "stars of the Medici" or Medicean stars (Medicea sidera) in honor of the prince of Medici (the name is still in use in Italy). It gave the following names: Principharus, Victripharus, Cosmipharus and Ferdinandipharus. The names Io, Europa, Ganymede and Callisto were given by Simon Marius in 1614 in his "Mundus Jovialis". Simon Marius claimed to have observed the satellites before Galileo, in November 1609. It is possible, but he did not understand what he was observing. The term "satellite" comes from the Latin "satelles, satellitis" meaning guard or escort, and was given by Ozanam.
Following this discovery, how Galileo identified the different four satellites and how he determined their periods of rotation around Jupiter. The problem is less simple than it appears because it was impossible to observe all time: the day would interrupt the observations (there were then 10 hours night), when this was not the clouds ... According to the writings of Galileo, he would have identified the first satellite away most of Jupiter and calculated its positions in order to be able to identify the next one walking away most of the planet, and so on. Theoretically, this method works (it is possible to try with satellite ephemeris) but practically , the measures were not enough precise for that: Galileo was making measurements with a precision of the order of a minute degree. It is assumed that Galileo used the fact that the four satellites have not the same brightness, which greatly facilitated their identification which was made at the beginning of the year 1611.
On January 12, 1610, while observing Jupiter's satellites, Galileo witnessed an eclipse by Jupiter but did not understand its meaning before 1612. Galileo adopted a circular motion for the satellites of Jupiter in March 1610. To predict the positions, he had to build tables of the motion and for this it was necessary to be able to make observations of precise positions. Unfortunately, telescopes at the time did not permit it.
The first tables were made by Galileo in 1612 and Marius in 1614. It is only in the Hodierna tables appearing in 1656 that latitudes of satellites above a reference plane were given. Hodierna also makes predictions of eclipses. In 1643 Fontana observed a shadow of a satellite crossing the surface of Jupiter. The interest of the eclipses by Jupiter was rapidly understood. The observation required only to note the time of the phenomenon and it gave an accurate position of the satellite as entered or emerged from the shadow of Jupiter. Once predictions of eclipses performed, the observation of an eclipse allowed to obtain a common time scale to all terrestrial observers and therefore to determine the longitude of the place where they were observing. This method was used by many geographers mapping uncharted territories but did not serve at sea since observation from the deck of a ship was too difficult. Lalande also wrote in 1792 in his "Astronomy": "The Galilean satellites are continuously used by astronomers to determine the differences in longitude between the different countries of the world".
The eclipses by Jupiter (see the specific page dedicated to them) are still observed nowadays. However, they have been supplanted by direct photographic observations of positions from the late nineteenth century to determine the positions of the satellites. The observation of an eclipse is indeed rendered inaccurate due to the thick atmosphere of Jupiter that refracts light rays at the edge of the shadow of Jupiter. But the observation of the light absorption by the atmosphere of the planet Jupiter during an eclipse was used to analyze this atmosphere, as the observation of the drop of light at the beginning of an eclipse in a large number of wavelengths eclipse (figure above).
As we have seen, the importance of the eclipses of Galilean satellites
encouraged works for making predictions of
these events and the construction of tables of the motion of
these bodies. After Galileo, Marius and Hodierna, Cassini
published in 1668 his "tables of the motion and calculation of eclipses".
Based on a large number of observations of eclipses,
these tables were much more accurate than previous ones
but were further improved in 1693, after Roemer has
showed that the speed of light was finite thanks to the
observations of the eclipses of Io. Indeed, the distance between Earth and Jupiter
varies during the year from 600 to 900 million kilometers
so that the light will take from 30 to 50 minutes
to come from Jupiter. Eclipses occurring regularly
around Jupiter, the offset of 20 minutes was quickly noticed
by observers: Roemer deduced that the light had
a finite velocity and calculated it.
In 1749, Bradley publishes tables and notes the inequality of
437 days in the time of the eclipses of the three
first satellites. Maraldi reported at that time the mutual action
between the satellites and begins to suspect the eccentricities of the
orbits and the nature of inequality. Wargentin will publish
improved tables in 1757. At this time, the
satellite motion is described by empirical equations,
purely kinematic and Lalande could say in the "Connaissance des temps"
in 1763 that "the inclinations and nodes of the orbits experience
variations that are still not known".
But in the eighteenth century, from Newton to Laplace,
the principles of dynamics and universal gravitation
will be theorized. Everything will change for the modeling of the motions:
it will be possible to write equations representing
dynamical models. For the Galilean satellites, the
problem will be difficult and is not yet fully
solved even today: all the difficulties of the celestial mechanics
can be found here. First, many forces
acting on the satellites: the Sun, far but massive, the flattening of
Jupiter, the presence of Saturn and also the mutual interactions
between satellites. These interactions will result in a resonance
that will force the motion of the satellites. The first three satellites
do not move independently of each other, but
have their longitudes L1, L2, L3 connected by the relation :
L1 - 3 L2 + 2 L3 = 180°.
This remarkable relationship will imply that some configurations between the
satellites are not possible, for example the first three satellites
can not be aligned on the same side of
Jupiter. The following figure shows where should be the third
satellite J3 when J1 and J2 are aligned with Jupiter (a), J2 and J3
(b) and finally J1 and J3 (c).
The satellites have obviously tend to escape
this constraint but they can not get away from more than
one degree: the resonance takes them back to their imposed
configuration.
From the dynamical equations, tables (i.e. ephemerides)
would progress quickly: the first theories are
due to Bailly and Lagrange in 1766, then comes the one of
Laplace, the most complete in 1788. In 1791 Delambre built
tables from Laplace's theory and observations of
over 6000 eclipses.
The nineteenth century was the golden age of celestial mechanics
and astrometric observations. From the point of view
of the theory Damoiseau improved the Laplace's work and
publishes ephemerides and predictions of eclipses with a
better accuracy. Further improvement came from Souillart
in 1880. Then comes the monumental work that realizes Sampson,
a complete analytical theory of motion of Galilean satellites
that was used to build the ephemerides
from the late nineteenth century, but which was not published
before 1921 due to the complexity of the task. It should be noted
that the building of an analytical theory,
that is to say, the construction of a solution of a system of differential equations
describing the motion of the satellites, solution
which is proved to do not exist and that we will ever
only approximate and not exactly, was the only method
at that time. Nowadays, computers allow us
constructing purely numerical solutions easier to
obtain but which have the disadvantage of being difficult to extrapolate
in the future. Despite this, the Sampson's theory was
in use until the end of the XXth century.
Along with theoretical work, observations
progress: eclipses were dated more precisely.
The satellites moving at about 10km/second,
an error of 30 seconds on the time of an eclipse
corresponds to an error of 300 km in the satellite orbit. From
the late nineteenth century, the observation of eclipses
became photometric, that is to say the decreasing or
increasing brightness during an eclipse
is no more evaluated according to specific criteria of
each observer but by comparison with measured
well calibrated photometric references. The
increasing size and therefore the power of the instruments also
allowed to make direct measurements of position when no
eclipses were observable. The observation was to measure the apparent angle between
two satellites at a given time and the position angle
of the straight line connecting the satellites. A micrometer was used
for measuring small angles on the sky. This type of observation
was introduced by Bouguer in 1748 from Fraunhofer but the best
instrument built especially for this was running near 1896 at the Cape Observatory
in South Africa, instrument named heliometer
because it was also used to measure the diameter of the Sun (the heliometer
has a lens cut in two pieces that slid along
their diameters, so we obtain two images that were put in coincidence
and by reading the measurement on the graduated circles we get the observed
positions). Daguerreotypes
invented in 1837, did not serve to observe the satellites of
Jupiter (only the Sun and the Moon). Contrarily, the plates
first using collodion, and second using gelatino-bromure allowed to photography
fainter stars. Compared with micrometric observations,
photography was used to preserve the image and make measurements quietly
after observation, although its accuracy was
not better if using a telescope of equal power. For
photographic plates of quality, the instruments built
for visual observation could not match: lenses had to
be achromatized (the eye is not sensitive to the same
wavelength than photographic plates) and the driving of the telescope
had to be improved
to allow long exposures and compensate perfectly the diurnal motion of the Earth.
Also, the astronomical photography
progresses when the Henry brothers proposed their
refractor named "équatorial photographique de la Carte du Ciel" having a
33cm aperture and a focal length of 3m 43. Photographic observations of the
Galilean satellites could begin in the years
1880-1890 in parallel with improved observations of eclipses
and continued during the 1920-1930. Curiously
photographic observations were not used at that time
to improve the ephemerides : the accuracy
was limited due to the short focal length of the refractors
of the "Carte du ciel" measuring rather large fields
while the Galilean satellites remained clustered around
Jupiter, too bright. Instruments with a longer
focal length to enlarge the field of the Galilean satellites
would be better
but the low sensitivity of photographic plates at that time
would not permit such observations. The observations made by heliometer,
although more accurate than the observations of eclipses, were
no more used to improve the ephemerides .
See the pages on the instrumentation
of astrometric observation and also the one on the telescopes for more details on the used technics.
After the extensive work of the nineteenth century and the many observations made at that time, the dynamical study of the Galilean satellites will stop in the 1920s since it is estimated not to go further (at that time the accuracy on positions is of about 800km) and astronomers started to look at their nature. The astrophysics studing the radiation emitted by the stars was then progressing rapidly. The increasing power will permit instruments to try to see details in the surface of the satellites. Unfortunately observation can only be visual and the satellites have an apparent diameter very small, this diameter being determined during occultations by the Moon. Measuring the amount of light reflected by the satellites show that they are particularly bright, especially Io and Europa. The measurement of the light by the photoelectric effect might provide variations with time. This have demonstrated the synchronous rotation of the satellites (they show always the same face to Jupiter). The determination of their density will call dynamical studies. By measuring the mutual interactions between satellites, we may determine their masses and hence, their density. Measurements were made in 1928 with an error of 20%, which is very honorable for the difficulty. In the 1950s techniques improve, measurements are more accurate. Photometry, polarimetry and spectrophotometry (see pages on these topics) were developed. We measure colors, we look at atmospheres. In the 1960s, it was suggested the existence of water on Europa and Ganymede, one noticed the high reflectance of Io in red and some authors even consider the existence of a volcanism generated by the powerful tidal effects of Jupiter on Io.
The arrival of space technology in the years
1960 changed the observations. Sending a probe near
Jupiter and its moons is the best way to get
observations of a quality that is not possible with a ground-based
instrument. The preparation of space missions
encouraged astronomers to look at the ephemerides
for a better accuracy. In the 1970s, observational campaigns
were initiated. Long focus refractors were used
associated with very sensitive photographic plates.
A neutral density filter was used to hide Jupiter, too dazzling,
and much more precise astrometric positions were obtained
than at the beginning of the century. We then saw that
theories were far from having the accuracy
announced by their authors at the beginning of the century.
Ephemeris accuracy was only
3000km ! Researchers at the Jet Propulsion Laboratory (USA) and
Bureau des Longitudes (in France) will resume the theory of Sampson
published in 1921 for computer programming and tried
to correct defects, especially due to the fact that all
the calculations were made by hand at that time.
Observations were then systematically conducted every year
to provide a database to allow the building of
ephemerides using the
theory of Sampson "renovated". All
photographic and heliometric old good precision observations
which had not been used previously were analyzed and used with the new ones.
Dynamical studies of the Galilean satellites
are not yet completed:
determining a possible acceleration
(or deceleration) of the motion of Io, close to Jupiter is still a goal for astronomers.
What are the tidal effects?
What is the influence of the torus of dust in which Io orbits?
The theory can estimate this effect quantitatively and
only more accurate observations will allow us to
detect and quantify this effect.
In addition to the series of photographic observations which have been
made in the 1970s, other types of observations
were studied, practiced or
planned for the future.
Difficult to predict before the arrival of computers, the mutual events of satellites provide
valuable information when observed.
Relative positions with an accuracy of a few milliseconds of
degree where other types of observation do not give
the tenth of a second of degree, obtaining data on
the nature of the surfaces, detection of the volcanoes of Io
were possible through the observation of these events.
International campaigns of observation were organized for
these phenomena requiring photometric receptors for
astrometric purpose.
The appearance of CCD has achieved more easily
observations, these receptors for both observation
positions and phenomena.
Note finally the distance measurement Earth-satellite through
radar shooting on the Galilean satellites. Indeed, it is impossible to
perform radar shots on Jupiter that does not reflect
waves while the satellites are available. These shots were
made through the Arecibo radio telescope in
Puerto Rico.
Volcanoes of Io discovered by the Voyager spacecraft were
subject to observations from the ground. Both probes
Voyager flew Io and detected volcanoes were
not quite the same for the two probes: the volcanic activity
was so strong that volcanoes changed their appearance
in a very short time. Variable phenomena as
quickly deserved to be observed regularly
from Earth.
The first method which was used was
the occultation of Io by another satellite. These mutual
phenomena occur only every six years and it is necessary
to take profit of the opportunities. So,
observations of the flux and the position of the volcanoes were made.
The second method is observing directly the surface of Io in infrared.
Thanks to the technics of
adaptative optics, images of its surface have been obtained as
illustrated below. One
will find here an animation showing the volcanoes of Io during
a revolution of the satellite around Jupiter with a passage in the shadow of the
planet. This observation has been made on the Keck telescope with adaptive optics.
Space probes that have approached the Jupiter system and observed the Galilean satellites made a larger harvest of data for the exploration of solar system. New worlds, very different from what we knew before were revealed. Let's see what we know today after the passage of several spacecrafts in their environment.
Io :
The proximity of Jupiter influences Io : even before receiving images from the space probes, it was suggested that tides from Jupiter could create an
active volcanism on Io. The infrared observations revealed that the surface of Io was warmer than expected.
The photos from Voyager actually revealed nine highly active volcanoes, some ejecting matter up to 300 km altitude. In addition to the tidal forces from Jupiter, the gravitational perturbations of Europa and Ganymede on Io deform the surface of a hundred meters (for comparison, the Moon and the Sun have an effect of some tens of centimeters on Earth) and we understand the warming of the surface. The surface temperature is 130K (-143°C) and the one of the volcanoes or hot spots is 290K (17°C).
Io is made of rocks containing little iron; its surface,
covered with sulfur and sulfur dioxide presents, in addition to
volcanoes, hot spots and outpourings of lava, a relief of
mountains up to 10 km altitude. The interior of
the satellite is probably composed of an iron-nickel core surrounded by
a rocky mantle as suggested by the Galileo probe measurements.
Io interacts more violently with the magnetosphere of
Jupiter who pulls the material (one ton per second) that
will form a torus around Jupiter.
Europa :
Although different from Io, Europa, however, has also
amazing features: it is a body without relief
whose surface is made of a crust of a water ice the thickness of which being
5 miles under which there is an ocean
50 kilometers deep. Deeper, the mantle is
rocky then comes an iron-nickel core.
Europa's surface shows no marking relief
without any craters. Meteoritic impacts
however ejected a darker material than the
surface. The craters are probably filled quickly
by eruptions of ice gushing fractures of the ice,
created also by tidal forces.
Ganymede :
Ganymede is the largest of the Galilean satellites. Its
lower density suggests a large rocky core surrounded by
a mantle of ice and silicates. The surface crust is rocky
but also contains water ice. The magnetic field measurements
made by Galileo suggests an important ocean of
salt water under the surface crust.
Ganymede's surface has a significant relief of
valleys, mountains and craters which ejected
ice from underground. The surface temperature varies from 90 to
160K (-113 to -183°C).
Callisto :
Callisto is characterized by a very old surface
(4 billion years!) having a significant number of craters
(the highest density of all bodies of the
solar system!). This surface is composed of rocks and
of ice and does not present a significant relief. Craters
impact are surrounded by concentric rings and ejected ice
form clear areas on the surface.
The small density of Callisto and measures made by Galileo
suggest that the crust is 200 km thick
over an ocean depth of 10 km around
an inner core which does not have a uniform conformation.
Credit : JPL/NASA
The drawings above show the interior of the galilean satellites from measurements made by the space probe Galileo. Water is shown in blue.
Credit : J.E. Arlot/IMCCE